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Abstract—We investigate the security of wireless sensor
networks under the pairwise key distribution scheme of
Chan et al. [2]. We present conditions on how to scale the
model parameters so that the network is i) unassailable,
and ii) unsplittable, both with high probability, as the
number of sensor nodes becomes large. We show that the
required number of secure keys to be stored in the memory
of each sensors is an order of magnitude smaller than what
is required for the Eschenauer-Gligor scheme [5].
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I. INTRODUCTION

It is envisioned that security will constitute a key challenge
for wireless sensor networks (WSNs) deployed in hostile en-
vironments. Unfortunately, many security schemes developed
for general network environments do not take into account
the unique features of WSNs: Public key cryptography is not
feasible computationally because of the severe limitations im-
posed on the physical memory and power consumption of the
individual sensors. Traditional key exchange and distribution
protocols are based on trusting third parties, and this makes
them inadequate for large-scale WSNs whose topologies are
unknown prior to deployment. We refer the reader to [1], [5],
[8] for discussions of the security challenges in WSN settings.

Random key predistribution schemes were introduced to
address some of these difficulties. The idea of randomly
assigning secure keys to sensor nodes prior to network de-
ployment was first introduced by Eschenauer and Gligor [5].
Since then, many competing alternatives to the Eschenauer and
Gligor (EG) scheme have been proposed; see [1] for a detailed
survey of various key distribution schemes for WSNs. In this
paper we consider the random pairwise key predistribution
scheme of Chan et al. [2] and analyze its resiliency against
sensor capture attacks. Interest in this scheme stems from the
following advantages over the EG scheme: (i) Even if some
nodes are captured, the secrecy of the remaining nodes is
perfectly preserved; and (ii) Both node-to-node authentication
and quorum-based revocation are enabled.

Given these advantages, we found it of interest to model the
pairwise scheme and to assess its performance. A number of
issues related to secure connectivity and to the dimensioning

978-1-4577-1348-4/11/$26.00 ©2011 |EEE

of memory sizes have been discussed recently in the references
[9], [10]. In the present paper, we are interested in determining
the resiliency of the pairwise scheme against node capture
attacks. We do so in the following setup: An extremely
powerful and knowledgeable adversary captures a number of
sensors with the goal of severely impairing the functionality
of the whole network. As was done in [7] for the EG scheme,
the main question discussed here is whether this objective can
be achieved by capturing a small number of sensors.

The analysis is given in the many node regime: We first look
at the asymptotic behavior of the maximum number C,.(n; K)
of edges that can be compromised by capturing r nodes vs.
the total number |E(n; K)| of edges in the network as the
number n of sensors grows unboundedly large — Here K is
the parameter specifying the pairwise scheme; see Section
Il for details. Next, in the same regime we characterize
the asymptotic behavior of the size I.(n; K) of the largest
subset of sensors whose communications with the rest of
the network can be compromised by capturing r nodes. For
both quantities we give conditions on the scheme parameter
K and on r that ensure that if r,, = o(n), then with high
probability C,. (n; K) (resp. I, (n;K)) grows sub-linearly
with | E(n; K)| (resp. n). These conditions are highly desirable
as they imply that an adversary cannot impair a considerable
part of the network without capturing a considerable number of
nodes. Both conditions were introduced in [7] under the names
of unassailability and unsplittability, respectively, in order to
evaluate the resiliency of the EG scheme; see Section III for
details. As discussed in Sections IV and V, a comparison of
our results with those of [7] shows that both properties can be
achieved by the pairwise scheme with memory requirements
which are an order of magnitude smaller than that of the EG
scheme. Proofs are available in Section VI.

A few words on the notation and conventions in use: For
sequences a,b : Ny — Ry, we write a, = o(b,) as a
shorthand for lim,, . §* = 0. Moreover, a, = O(b,) means
that there exists C' > 0 such that a, < C -b, for all n
sufficiently large, and we use a,, = Q(b,) if there exists
¢ > 0 such that a,, > c- b, for all n sufficiently large. The
abbreviation a.a.s. stands for asymptotically almost surely.
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II. THE MODEL

The random pairwise key predistribution scheme of Chan
et al. is parametrized by two positive integers n and K such
that K < n. There are n nodes which are labeled : = 1,...,n
with unique ids Idy, ..., Id,. Write N':= {1,...,n} and set
N_; == N — {i} for each i = 1,...,n. With node i we
associate a subset I',, ;(K) of K nodes selected at random
from N_; — Each of the K nodes in T',, ;(K) is said to be
paired to node . Thus, for any subset A C N_;, we require

n—1 -1 : _
PL,i(K)=A] = (K) 1f|A|_.K
0 otherwise

ensuring that the selection of T, ;(K) is done uniformly
amongst all subsets of N_; which are of size K. Also, the
set-valued random variables (rvs) I'y, 1(K),..., 'y n(K) are
assumed to be mutually independent.

Once this offline random pairing has been created, we con-
struct the key rings 3,, 1 (K), ..., 2, »(K), one for each node,
in the following manner: Assumed available is a collection
of nK distinct cryptographic keys {w;j¢, @ = 1,...,n; £ =
1,....,K}. Fix ¢ = 1,...,n and let ¢,,; : I';(K) —
{1,..., K} denote a labeling of T, ;(K). For each node j in
I';,; paired to 4, the cryptographic key wye, ,(;) is associated
with j. For instance, if the random set I, ;(K) is realized as
{j1,---,Jr} with 1 < j; < ... < jg < n, then an obvious
labeling consists in £, ;(jx) = k with key w;);, associated
with node j; for each k = 1,..., K. Finally, the pairwise
key wy, ;i = [Id;[Id;|w;je, ,(j)] is constructed and inserted in
the memory modules of both nodes i and j. The key wy, ;.
is assigned exclusively to the pair of nodes 7 and j, hence
the terminology pairwise distribution scheme. The key ring of
node ¢ is the set

Zn,i(K) = {w;,ij(K)v JE Fn,i(K)}U{w;,jia 1€ Fn,j(K)}-

If two nodes, say ¢ and j, are within communication range
of each other, they will be able to establish a secure edge
if at least one of the events 7« ¢ I',, ; or j € I'y, ; is taking
place — Both events may take place, in which case the memory
modules of node ¢ and j both contain the distinct keys wy, ;.
and wy, ;.

Under full visibility, namely when every pair of nodes are
within transmission range of each other, the pairwise scheme
gives rise to the following class of random graphs: We say
that the distinct nodes ¢ and j are adjacent, written ¢ ~ j, if
and only if they have at least one key in common in their key
rings, namely,

i~g o iff 3, (K)NY, (K) #0. (1
We denote by H(n; K) the undirected random graph on the
vertex set {1,...,n} induced by the adjacency notion (1);
this corresponds to modeling the pairwise distribution scheme
under full visibility. Finally, let E(n; K) denote the (random)
set of edges in H(n; K).

III. SECURITY METRICS AND RESILIENCY
A. Measuring resiliency in WSNs

As we seek to understand the resiliency of the network
against external attacks, we begin by specifying the capabil-
ities of the adversary considered here. To do so we adopt
the following model already used in [7]: The adversary
(sometimes also called the attacker), upon launching an attack
against the network, captures some of its nodes, as a result
of which it now owns the key rings stored at the captured
nodes. An edge between two nodes is deemed compromised
if the adversary owns a key which is stored in both their key
rings. By the nature of the pairwise scheme this happens as
soon as any one of the two nodes is captured. The adversary
is assumed to have unlimited computing power; in particular
it is expected to have sufficient knowledge of the network to
minimize the number of nodes that need to be captured in
order to compromise a given number of edges.

In many WSN applications, the network as a whole can
still operate in a useful manner even though a small number
of sensors has fallen under the control of the adversary [7].
In such situations it might be more relevant to protect the
global functionality of the network rather than a few individual
communication links. However, if the adversary is capable
of capturing a large fraction of the nodes, then there is not
much that can be done to salvage the network functionalities.
Hence, in assessing the level of security provided by a key
predistribution scheme, it is natural to ask whether significant
damage to network functionalities can be inflicted by capturing
just a small number of nodes. The next two sections provide
ways to quantify this issue.

B. Unassailability

With A being the set of sensor nodes captured by the
adversary, let C4(n; K) denote the total number of edges that
are compromised as a result of this attack. In other words,
Ca(n; K) is the total number of edges (in the random graph
H(n; K)) with the property that at least one end of the edge
is a node in A4, i.e.,

Catni ) =|{ 0.3

1§Z.<J.§n ) ieA\/jeAH.
t~]

The adversary under consideration is capable of maximizing
Ca(n; K) for a given number | A| of nodes to be captured. This
prompts us to introduce for each » =1, ..., n, the maximum
number C,.(n; K) of edges that can be compromised by
capturing 7 nodes, namely

Cr(n; K) :=max (Ca(n; K) : AeN,)

where N, denotes the collection of all subsets of {1,...,n}
with exactly r elements.

Under the assumptions made on its capabilities, the power-
ful and knowledgeable attacker considered here will be able to
compromise C.(n; K) edges by capturing (the appropriate) r
nodes — This reflects a worst case mindset from the perspective
of the network. Given this definition, it is natural to ask how
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the quantity C,.(n; K') behaves in relation to the total number
|E(n; K)| of edges as n gets large (with K and r also possibly
scaled with n). It is common practice [3], [7] to regard the
condition

Cy, (n; K)=0(|E(n; K)|) whenever r, =o0(n) (2)

as indicative of the resiliency of the network against node
capture attacks. A crucial implication of the condition (2) is
that in the many node regime, an adversary cannot compromise
Q(|E(n; K,,)|) edges by taking over o(n) nodes. We shall use
condition (2) as a basis for characterizing the unassailability
of the pairwise scheme. More specifically, we give conditions
on K and n such that for any € > 0, we have

nllrr;oIP[Crn(n;K)ZE-|E(n;K)|]=O 3)

whenever 7, = o(n). When the parameter K is also scaled
with n, the condition (3) will be used with K replaced by K.

C. Unsplittability

The metric (3) checks whether an adversary can compro-
mise a considerable fraction of edges by launching an attack
on few sensors. But, it does not tell anything about the ability
of the adversary to disconnect the network. To explore this
issue further, with A still acting as the set of nodes taken
over by the attacker, we say that the subset S of nodes is A-
splittable if the adversary can compromise all the edges from
S to 8¢ = N — S by capturing the nodes in A. To be more
precise, for any subset S of nodes let E(n; K)(S) denote the
set of edges in H(n; K) with one end in S and the other in
S¢. Then, the A-splittability of S is characterized by

/\(i,j)eE(n;K)(S) (Z eAVje A). (@)

Given the unlimitled computing power available to it, the
attacker can in principle minimize the number of nodes it
needs to capture in order to split S from the rest of the
network. Thus, for each r = 1,...,n — 1, we say that the
set S of nodes is r-splittable whenever there exists a set A of
r nodes such that S is A-splittable. The r-splittability of S is
encoded through the conditions

Vaen, (ANijepmx)ys) (i € AVj e A)). (5)

It is clear that if S is r-splittable, then its complement S°
(in NV) is also r-splittable. Finally, let I,.(n; K) denote the
size of the largest subset S (with size [S| < %) that can
be disconnected from the rest of the network by capturing
r nodes, namely

I.(n; K) = max{|S| S CN,|S| < g, S is r-splittable}.

It is natural to wonder as to the behavior of I,.(n; K) as n
grows large — It is always the case that r < I,.(n; K) < 3.
From the perspective of the network, it is desirable that the
largest subset which can be disconnected be small whenever
the number of captured nodes is small. As in [7] this leads to
the condition

I, (n; K) = o(n)

n

whenever r,, = o(n)

as our second characterization of resiliency. In this paper, we
give conditions on how to scale K with the number n of nodes
such that for each 0 < v < %, we have

lim P[I, (n;K,)>~n] =0 (6)
whenever r,, = o(n) — From these definitions we note that (6)
trivially holds when v > % The operational usefulness of (6)
lies in ensuring that for any subset S of N with |S| = Q(n),
an adversary must capture at least £2(n) nodes in order to
compromise all edges from S to S°.

IV. RELEVANT PRIOR WORK

The resiliency of WSNs against node capture attacks was
also investigated by Mei et al. [7]: They considered the EG
scheme as the underlying security mechanism and obtained
conditions on the scheme parameters to ensure the appropriate
analogs of (3) and (6). We now summarize their findings in
order to identify the number of keys (to be kept in the memory
of each sensor) that is required to ensure the conditions (3)
and (6).

Let K(n;#) denote the random key graph on the vertex
set {1,...,n} induced by the EG scheme under full visibility
[12]; here 6 = (Xgg, P) collectively stands for the parameters
that specify the EG scheme, namely the (fixed) size Xgg
of the key ring of each sensor node and the size P of the
key pool. Thus, let 2, 1(0), ..., %, »(0) denote the key rings
associated with nodes 1, . .., n, respectively, in the EG scheme.
By construction, |X,,1(0)| = -+ = |£,,(0)] = Zgc. We
are now in a position to present the main result obtained in
[7]. A scaling for the EG scheme is any pair of mappings
Yra, P : Ng — Ng such that ¥gg,, < P, foralln =2,3,.. ..

Theorem 4.1: Under the EG scheme, the conditions (3) and
(6) hold for any scaling ¥Xgq, P : Ng — Ny which satisfies

YEa,n = yv/nlogn. @)

In [7] it is claimed, but without proofs, that both properties
hold also when ¥gg., > logn. The stronger condition (7)
was derived so as to also ensure that K(n;#0,) is a.a.s con-
nected. Here, to comply with this practice, we recall sufficient
conditions for H(n; K) to be a.a.s. connected. To fix the
terminology, we refer to any mapping K : Ny — Ny as a
scaling (for the pairwise scheme) provided

K,<n, n=23,...

In [11], the following was shown:

Theorem 4.2: For any scaling K : Ny — Ngy such
that K,, > 2 for all n sufficiently large, it holds that
lim,,_, P [H(n; K,) is connected] = 1.

V. MAIN RESULTS AND DISCUSSION

The main result of the paper, given next, provides a version
of Theorem 4.1 for the pairwise scheme.
Theorem 5.1: Consider a scaling K : Ny — Ny. We always
have (3), whereas (6) is satisfied whenever
lim K, = oo. )

n—oo
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Theorem 5.1, which is established in Section VI, gives
conditions for unassailability and unsplittability under the pair-
wise scheme. However, in contrast with the EG scheme and
its variants, the key rings X, 1(K),..., %X, ,(K) produced
by the pairwise scheme are of variable size between K and
K + (n—1). Therefore, in order to meaningfully compare our
findings with those for the EG scheme from [7], we need to
understand how the sizes |X,, 1(K)],...,|2nn(K)| of these
key rings depend on K and n.

To explore this issue further, observe that

n

Soi(K) =K+ Y 1€l ;(K)], i=1,..,n
j=1, j#i

so that
X0 (K)| =5t K +Bin(n —1,K/(n — 1)), ©)

whence E[|X, ;(K)|] = 2K. Since every key appears in
exactly two different key rings, it is also the case that

_ |Zn,1(K)| +e ‘En,n(K)‘
n

|Z|n,Avg(K) : =2K

by construction. Furthermore, in order to deal with worst case
scenarios, we introduce the maximal key ring size given by

|Z] 0 Max (K) := ,max 1. (K)|, n=2,3,....

Upon using a standard Hoeffding bound [4, Thm. 1.1, p. 6]
for the binomial rvs (9), we obtain the following concentration
result for the maximal key ring size. This result can be
established with the help of standard bounding arguments, but
is omitted here due to space limitations.

Theorem 5.2: For any scaling K : Ny — Ny such that K,, =
O(logn), there exists ¢ > 0 such that

Hm P (|2 max(Kp) > cK,] = 0. (10)
n—oo

In view of Theorem 4.1 and Theorem 5.1, we can now
compare the security properties of the pairwise scheme and
of the EG scheme. It is clear from Theorem 5.1 and (10)
that the pairwise key distribution scheme can ensure (3) with
the size of all key rings being on the order log n. Similarly,
Theorem 5.1 and (10) show that to ensure unsplittability, the
pairwise scheme requires key ring sizes of order O(logn).
As we compare these findings with Theorem 4.1, we see that
the pairwise scheme can achieve both properties with much
smaller key ring sizes than needed for the EG scheme; see
Figure 1.

VI. A PROOF OF THEOREM 5.1

Both assertions in Theorem 5.1 are established in Section
VI, and rely on a basic inequality discussed next. For every
e>0and K =1,2,..., set

H.(z;K)= (e —2)Klog2 + zlog (%)’ 0<z<1.

| Unassailability [ Unsplittability |

EG - Ygq Q(v/nlogn) Q(v/nlogn)
Pairwise — |X|ave | 4 2K,
Pairwise — |X|max | O(logn) O(logn)

Fig. 1. A comparison of the EG scheme and the pairwise scheme in
terms of the maximum number of keys required to achieve unassailability and
unsplittability. Here, K, is any integer sequence satisfying K, < mn and
limy,— o0 Ky, = o0. The pairwise scheme can ensure both properties with
much less memory requirement as compared to the EG scheme.

Proposition 6.1: With € > 0, consider positive integers K

and n such that K < n. Then, for eachr = 1,2,...,n, we
have
P[C,(n; K) > enK] < e "He () (11)
whenever
s>T<1+2e”_’"). (12)
n n—1

The proof of Proposition 6.1 is omitted due to space
limitations; full details can be found in [12]. The proof of
Theorem 5.1 now proceeds as follows;

Consider the random graph H(n; K) for positive integers
n and K such that K < n. By construction each key is
associated with one and only one edge in H(n; K), whereas
at most two keys can be associated with a given edge. For
a given edge ¢ ~ j, this upper bound is reached when both
events 4 € 'y ;(K) and j € ', ;(K) take place, so that

Kn

= <|B(m;K)| < Kn. (13)

Now consider any scaling K : Ny — Ny and assume that
the condition

rn = o(n) (14)
holds. Given ¢ > 0, the condition
€ Tn n—nr,
-—>—(14+2 15
2 ~ n < e n—1 > (15)

will be met for all n sufficiently large. On that range, Propo-
sition 6.1 (with ¢ replaced by 5) yields

Kn —nHe (I
P | k) 2 25| <R g
and the convergence
Ky
lim P [Crn(n;Kn) > 5"2 ] —0 (17)

follows since liminf,,_, H; (%", Kn) > 0 under (14). The
desired conclusion (3) is obtained from (17) upon using (13).

As we turn to establishing (6), fix the positive integers n and
K such that K < n. The discussion starts with the following
observation: Consider an attack that succeeds in capturing the
nodes in A, and let S denote an arbitrary subset of nodes. If
S is A-splittable, then all the edges between the set of nodes
S and its complement S are compromised by the capture of
nodes in A. Hence, the total number C4 (n; K) of edges which

are compromised by this attack must be at least | E(n; K)(S)].
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Therefore, by the characterization (4) of S being A-splittable
we have the inclusion

[S is A-splittable] C [Ca(n; K) > |E(n; K)(S)|]. (18)

For each v in (0, %} let ./\/'n_,y denote the collection of all

subsets S of A such that yn < |S| < 5. For each r =
1,...,n, the definition of the count variable I,.(n; K') and the
inclusion (18) imply

P (I (n; K) = yn

= P| |J U [9is A-splittable]
| SEN,y AEN,
< Pl J U [CalmK) > |E(n; K)(S)]]
| SEN,y AEN,
< ) PC.(mK) > |E(n; K)(S)]] (19)

SENn, ~

with a union bound argument being used in the last step.
Next, pick € > 0 and ¢ in (0, 1) such that

2% < (1—06)y. (20)

The need for doing so will become apparent below. For each
S in N, -, conditioning on |E(n; K)(S)| > enK yields

P[Cr(n; K) = [E(n; K)(S)]] @21
< PICr(n; K) > enK]+P[|E(n; K)(5)] < enK].

If condition (12) were to hold, then Proposition 6.1 would give

r

Z P[Cr(n; K) > enK] < [Ny, . e nH (%K)
SeNn,'y

< e—n(HE(%;K)—log 2) (22)

since [N, | < 2™
As we consider the second term in the right handside of
(21), pick S in N, , and observe that

[E(n; K)(S)] = Y 1[i € Ty j(K)] := En 5(K). (23)

jESe ieS

In [10] the rvs {1[i € T, ;(K)], i € S,j € S°} were shown
to be negatively associated [6]. This fact allows us to use the
Chernoff-Hoeffding bound for the sum E,, s(K) [4, Thm. 1.1,
p- 6] in the form

P By s(K) < (1= 0 [Ey g(K)]] < e TEEsUI] (04

Note also that

K

-nK
n—1 n

E[Ens(K)] =S (n —|S]) - > (25)

o2

since yn < |S| < & by membership of S in N, . From (20)
we automatically have

enK < (1—0)E[E, 5(K)) (26)

for all n = 1,2, .... Using the bounds (23) and (26) together
with (24)-(25), we conclude

> PlIB(@ K)(S) < enk)

SEN, ~
< Y PlEus(K) < (1-8)E[Eys(K)]]
SENn ~
< ¥ e FEEsE)
SEN .~

IN

27)

(26_"’¥'K)n

Consider now a scaling K : Ny — Ny satisfying (8) and
replace K by K, for all n = 1,2,..., possibly making r
depend on n as well. As in the earlier part of the proof,
under (14) the condition (15) (with r replaced by r,) holds
for all n = 1,2, ... sufficiently large, whence (22) holds on
that range. It is now plain that

lim E P[C,, (n; K,) > enK,] =0
n—oo
SeNn ~

since limy, o (Hz(22; K,,) —log2) = oo under the condi-
tions (8) and (14). Similarly, under (8) we get

lim_ > PIE(n; Ka)(S)| < enk,] =0

SENn,~

from (27). The desired conclusion (6) is now an easy conse-
quence of the last two convergence statements when coupled
with the bounds (19) and (21).
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